A gap theorem for minimal log discrepancies of noncanonical singularities in dimension three

نویسندگان

چکیده

We show that there exists a positive real number $\delta>0$ such for any normal quasi-projective $\mathbb{Q}$-Gorenstein $3$-fold $X$, if $X$ has worse than canonical singularities, is, the minimal log discrepancy of is less $1$, then not greater $1-\delta$. As applications, we set all non-canonical klt Calabi-Yau $3$-folds are bounded modulo flops, and global indices from above.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimal Discrepancies of Toric Singularities

The main purpose of this paper is to prove that minimal discrepancies of n-dimensional toric singularities can accumulate only from above and only to minimal discrepancies of toric singularities of dimension less than n. I also prove that some lower-dimensional minimal discrepancies do appear as such limit.

متن کامل

Minimal Discrepancies of Hypersurface Singularities

We give an upper bound for the minimal discrepancies of hypersurface singularities. As an application, we show that Shokurov’s conjecture is true for log-terminal threefolds.

متن کامل

Infinitesimal Hartman-Grobman Theorem in Dimension Three.

In this paper we give the main ideas to show that a real analytic vector field in R3 with a singular point at the origin is locally topologically equivalent to its principal part defined through Newton polyhedra under non-degeneracy conditions.

متن کامل

Minimal Noncanonical Cosmologies

We demonstrate how much it is possible to deviate from the standard cosmological paradigm of inflation-assisted ΛCDM, keeping within current observational constraints, and without adding to or modifying any theoretical assumptions. We show that within a minimal framework there are many new possibilities, some of them wildly different from the standard picture. We present three illustrative exam...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebraic Geometry

سال: 2021

ISSN: ['1534-7486', '1056-3911']

DOI: https://doi.org/10.1090/jag/759